按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
精力理解和消化老师讲述的新知识,及时完成作业;余下的时间锻炼身体,
参加有益且适度的文娱活动,使自己身体健康、精力充沛,反过来又促进学
习效率的提高;此外,根据自己的爱好与特长,还可安排时间开辟第二课堂,
参加一定的社会活动,开阔自己的思路与眼界,增长书本上学不到社会知识。
他们为了实现德智体美劳全面发展的目标,选择了适合自己的最优安排,便
能用最少的时间、最好的质量去完成国家和人民交给的学习重任。
历史的长河虽说是漫长无限的,但历史赋予每个人的生命却只有几十
年,如何在有限的生命中完成更多的事业是每一个人都梦寐以求的事情。从
物质世界看,尽管博大的宇宙无边无际,但人类的生存空间与活动空间却是
十分有限的,农村的耕地有限,城市的住房、交通也很紧张,中国是这样,
世界各国也是如此。目前,世界上的各种资源在急剧减少,据预测,很多地
下资源的开采寿命只有几十年,如铜估计为 50 余年,锌估计 20 余年,铅估
计也只有 20 余年。现在不仅矿产资源在锐减,就是不少地方连生命不可缺少
的水也严重短缺。所以,人类对时间、空间、资源的利用,都要精打细算,
斤斤计较,都要有最优的利用方案;要用最少的时间,最小的空间,最省的
资源为人类创造最多的财富。总而言之,在有限的条件下使追求的目标达到
最优、最理想的结果,就是最优化的实质。
远洋轮船爆炸的启示
——系统科学中的模型方法
1853 年,英国制造的远洋轮船“大东方号”下水了。当时“大东方号”
轮船的豪华气派是前所未有的。然而好景不长,“大东方号”首次航行就失
败了。原来,蒸汽机的动力过小,不能满足船体运动的需要,水加器发生了
爆炸,造成 10 人伤亡。这样,“大东方号”没有能够到达东方,后来被用来
承担铺设海底电缆的任务了。
参加过“大东方号”轮船设计的工程师弗德吸取了该船的经验教训,此
后他在设计新船之前,先制造一个模型船放在水槽中的铁轨上。计算模型船
所遇到的阻力,然后根据这些试验数据的相似关系计算真船需要多大马力来
驱动,最后再制造新船。由于真船的实际数据与由使用模型船计算出的数据
十分接近,使这一方法成为造船工业上大家公认的好方法。而这种方法就是
系统科学中的模型方法。
我国古代劳动人民早在 4000 多年前就以飞蓬草遇风转动为模型,发明了
轮子。战国时期著名的木匠鲁班模仿草叶边缘锋利的小齿,在铁片边缘造出
小齿,发明了今天仍在广泛使用的“锯”。东汉著名的科学家张衡根据他的
实际观测认识了天体运行规律,制成了相似的仪器——“浑天仪”。宋朝的
喻皓于 989 年在京城汴梁(现在的开封)建造 8 角 13 层的开宝寺木塔时,也
是事先制造了一个小模型,进行研究、修改,然后才动工兴建。木塔塔身略
向西北倾斜,可见当时喻皓已考虑了当地的主导风向对建筑物的影响并且加
以防范。
从所列举的中外古今的事例,可以看出研究、设计、制造一个复杂的系
统,直接利用经验的方法是不行的,而通过模型方法往往能帮助我们完成任
务。
模型这个专有名词,青少年朋友听起来可能不会感到陌生。只要仔细回
想一下,我们或多或少地都接触过一些模型。像幼儿园小朋友喜欢摆弄的积
木玩具便是建筑物的简单模型,它形象地表达了砖、瓦、墙、柱、梁等及其
组合成的各式各样的房屋整体;小汽车是男孩子们喜欢的“交通工具”,布
娃娃则是陪伴女孩子们的“家庭成员”;手持各种兵器(玩具手枪、冲锋枪、
大刀、匕首等)的孩童可以神气活现进行一场有模有样的“战斗”;用泥沙
堆砌的山川路桥、用树枝草叶搭成的楼台庭院,可成为儿童时代理想的“家
园”。这些,都是缩小了的实物模型。
地图是另一类用符号表示的某一地区的模型。从地图上,可以看出地势
的高低、河流湖泊的位置、公路和铁路的分布情况、各城市的距离、矿产资
源和行政区域等,有的地图还可以表示出农林状况、人口密度。每天中央电
视台在天气预报中使用的气象云图,就是一种各地区天气情况的模型。
在你搬进一套新房之前,你也许会用尺子测量房间的长和宽,如果测得
房间长为 5 米,宽为 3 米,你会很容易算出房间的面积:
面积 = 5(米)×3(米)
=15(平方米)
这样,你就可以考虑合理地摆放家俱了。
我们还会在测量土地、兴修水利、建造工厂、筑路架桥等工作中看到计
算正方形、三角形、圆形等各种几何的面积。这些面积的计算都有相应的数
学公式来表达,我们称这些数学公式为表示系统特征的数学模型。
从上面这些例子,我们可以知道模型就是用语言文字、符号图形、实物、
数学公式等来描述、模仿现实系统而成的相近或相似系统,模型应与现实系
统存在一定的关系,服从相同的规律。因此,通过对模型的研究,可得到现
实系统的相应信息。
电子游戏的系统思想
青少年朋友喜欢在屏幕上做电子游戏。这种游戏由电子计算机模仿出现
场景,如弯弯曲曲的公路和不时出现的汽车,而你坐在屏幕前,可以像司机
一样控制一辆汽车,手中的控制器就是方向盘。有了这个方向盘,你可以驾
驶汽车不断随曲折的公路而变换方向,随时回避迎面扑来的车辆,安全地到
达目的地;而在另一种游戏中,电子计算机又可以模拟战斗,激烈程度不亚
于一场真正的战争。这些就是用电子计算机分别模仿驾驶汽车和双方交战的
模拟模型。
训练飞机驾驶员是一件非常重要而艰巨的工作。驾驶飞机训练,要占用
一架飞机,要消耗燃料,还需要教练员陪练及机场地面各种后勤人员的配合
支持。更危险的是,如遇不测,就会使飞机受到损坏甚至出现人员伤亡。后
来,人们想出一个办法,即用模拟模型输入电子计算机,模仿并显示飞机飞
行驾驶中可能出现的各种情形来进行训练。飞行员可以坐在由电子计算机以
及各种仪器表组成的与真飞机驾驶舱没什么两样的“驾驶舱”中,面对屏幕
上显示的机场跑道与飞行信号,驾驶“飞机”升空。如果学员操作不当,屏
幕上将会显示出危险的后果!当然,这对坐在模拟驾驶舱的学员来说,仅仅
是“有惊无险”而已,绝不会出现那种机毁人亡的重大事故。电子模拟装置
还可以模拟飞机的着陆、正常飞行、事故处理甚至空中激战等各种情形。可
以想象,这种模拟模型,要比电子游戏机中的模型复杂得多了。
当你到百货商店买衣服时,如果你仔细观察一下,就会发现有人仅看看
规格、选选颜色,检查一下衣服质量,便很快交完钱离柜而去,但更多的人
则挑选仔细,要看颜色,讲款式,还要试穿,要花比较多的时间才离开柜台。
由此产生一个问题,服装柜台需要几位售货员值班呢?如果售货员太少,顾
客排队太长,浪费了顾客的时间,有的顾客可能会因此而到别的商店去买衣
服,影响商店的生意。如果售货员太多,顾客虽不用排队了,但是售货员会
有很多的空闲时间,造成了人浮于事的局面。为了解决这个问题,确定售货
员的最佳人数,可以用计算机模拟顾客到达的人数、服务时间、排队时间,
以此来决定需要多少售货员最为合适。同样,邮局、银行、售票处、电话总
机房、医院、理发店等地方,都可以用计算机“模拟”服务情况,以决定工
作人员值班的最佳人数。
当然,并不是所有的模拟模型都要用电子计算机来解决问题的。比如说,
假如一个村庄要打一口井,向 5 个地点供水浇地,这口水井应打在什么地方,
才能使整个系统所用的供水管最短?有人提出一种方法,先假定在甲地打
井,计算从甲地到 5 个用水地点的供水管长度,然后相加,可得到总的供水
管长度。再用同样的方法计算在乙地打井所需的总供水管长度,与甲比较。
此外,还要选丙地、丁地等许多地方计算、比较,然后找出合适的打井地点。
村长觉得这种方法太繁琐了,而且是不是还有其他更合适的地点也不得而
知!
后来,另一个人找来一块均匀的薄板,将 5 个用水地点按比例画在板上,
连成一个 5 边形并锯下来。然后,用线穿过 5 边形吊起来,这时可以找到一
点,它能够使 5 边形吊起后不偏不斜与地面平行。该点叫做“重心”。与重
心对应的地点就是打井最合适的地点,在这里打井,将会使总供水管长度最
短。村长对这种方法十分满意。
数学题里的系统原理——线性规划模型
请看下面这个问题:
某工厂一天使用 12 吨煤、 20 度电,生产甲、乙两种产品。如果生产每
一吨甲产品消耗 2 吨煤、6 度电,卖出后可以净赚 4000 元,每一吨乙产品要
消耗 5 吨煤、 4 度电,卖出后可以净赚得 6000 元。问每天甲、乙两种产品
要各生产多少吨,才能使工厂净赚的钱最多?
仔细想一想这个问题,我们不难发现乙产品每 1 吨能赚 6000 元,比每 1
吨甲产品的赢利高。如果我们把所有的煤、电尽可能地用来生产乙产品,会
得到什么结果呢?从煤的角度考虑,可以计算出每天能生产乙产品
12÷5=2.4(吨)
从用电角度,可以计算出每天生产乙产品
20÷4=5(吨)
综合考虑煤、电的消耗,每天能生产 2.4 吨乙产品,相应的净收入为
2.4×6=14.4(千元)
每天还会有剩余的电力
20…2.4×4=10.4(度)
那么如果我们把每天的煤、电全部用来生产甲产品,结果又会是怎样呢?
从煤的角度,每天可以生产甲产品
12÷2=6(吨)
从电的角度,每天可以生产甲产品
20÷6=3.33(吨)
综合考虑,每天能生产 3.33 吨甲产品,净收入为:
3.33×4=13.32(千元)
这时每天会有剩余的煤
12…3.33×2=5.34(吨)
工厂对上述两种安排都不满意,因为这两种方案煤和电力资源都没有充
分利用。有人认为,如果每天只生产 2 吨乙产品,则消耗煤 10 吨、电 8 度,
收入 12000 元。省下了 2 吨煤,可生产 1 吨甲产品(同时耗电 6 度),可再
增加收入 4000 元。这两种产品一起可收入 16000 元,比前面只安排一种产品
生产的两个方案的赢利都多。除此之外,其实还可以试探其他方案,但试探
的方法过于繁琐。
实际上,用线性规划模型可以解决这一类各因素成比例关系的生产安排
问题。对于上述只生产两种产品,消耗两种资源的问题,因为因素少,可以
用简单的作图法来解决;对于涉及因素众多的线性