按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
定义上先于“一”。
我们曾在分别对成时,②于“一”的统系内表列有“相同”
,“相似”与“相等”。于“众”的统系有“相别”
,“不似”与“不等”。
“同”有数义;(一)有时为“于数相同”
;(二)
我们于事物之公式与数皆合一者称之为同,例如你与你自己“形式和物质”均合一;以及(三)假如其本体的公式
①四种对反中“相对”与“阙失”这两项并不绝对互斥,而可看作某一形式两端之消长,如阴缺则阳盛,阳缺则阴盛。
参考看卷T、104b27,卷I,105b26。
②曾见卷T,104a2。
…… 243
形而上学。
142。
合一者,例如相等直线与相等四边形与等角四边形均称“相同”
,此类甚多,这些凭其相等性而谓之同。
事物并非绝对相同,(一)
而在它们综合本体上论则并无差异者谓之“相似”
,这些在形式上实为相同;例如大正方形与小正方形相似,不等直线亦相似为直线;它们相似而不是绝对相同。
(二)相同形式诸事物原可能有程度上的差异者,如不明见此差异亦谓之相似。
(三)事物具有同一素质者,例如“白”——其白度或稍强或稍弱而其为色式则一——亦谓之相似。
(四)
各事物之诸素质——或为一般素质或为重要素质——相同者多于相异者,亦谓之相似,例如锡,于白而论,似银,又如金,于黄赤而论,似火。
于是,明显地,相别与不似亦有数义。
“别”之一义为同的对反。(所以事物于其它各物不为同则为别,不为别则为同)。别的另一义是除了诸事物于物质及公式上均各合一者,悉成为别;若此,则你与你的邻人应谓各别。
“别”之第三义就是上述数理对象诸例。
①所以每一事物对另外的每一事物均可以“同”或“别”为云谓,——但这里为同为别的两事物均须是现存事物,因为这样的“别”并不与“同”相反〈矛盾〉;因此非现存事物不以别为云谓(“不相同”可以为非现存事物的云谓)。
“别”是一切现存事物的云谓;每一现存事物既于本性上各自为一,也就各成为互别。
“别”与“同”的对反性质就是这样。但“异”与“别”
①见于1054a35—1054b3。
两直线或两四边形虽相同相等,但各别为两线两图形。
…… 244
。
242。形而上学
又不相同。所谓“别”与“别个事物”并不必需在某些特定方面有何分别(因为每个现存事物总是或同或别)
,但说事物相“异”
必需一事物与另一某事物之间具有某些方面之差异,所以凡相异者必须在其所公认的相同方面求其所以为异。此所谓公认的相同处即科属或品种;而所谓相异亦即在同科属上的品种之异,在同品种上的个别之异。
凡事物无共通物质,而不能互为创生者(亦即属于不同范畴者)
,谓之“科属有异”。如同在一个科属之内,则谓之“品种有异”
(“科属”的命意就指说两个相异事物〈品种〉间主要的“相合之处”)。
相对事物皆属相异,对成性为“异”的一个种类。归纳可以证明我们这个假定是真实的。凡事物不仅互别而更别于科属者,又事物之相别而仍隶于同一云谓系列①者亦即在科属上相同者,均可表现为有所相异。我们已在别篇②说明了什么样的事物为“于属相同”或“于属有别”。
章 四事物之互异者,其为异可大可小,最大的差异我称之为“对反性”。最大差异之为对反性可由归纳来说明。事物之异于科属者难于互相接近,它们之间距离太远也无法比拟;事物之异于品种者,其发生所开始之两极就是对成的两端,两极间的距离为差异之最大距离。但每一级事物间差异最大的那一端,也就是成为完全的一端。到这里再没有超越它的事物,而不为它物所逾越者这就完全。各级差异的系列,溯到
①见于986a23脚注。
②见卷,章九。
Q
…… 245
形而上学。
342。
其全异处便抵达这系列的终点(这与其它以达到目的为完全者其义相类)
,终极以外,更无事物;一切事物既尽包于两极之间,故以终为全,而既称为“全”
,便无所仗于它物了。这样,可以明白,对反性即最大差异;所称为“相对”的数义,其分别就在这些相对所达到那完全差异的不同距离,不同程度的对差就成为相应的各式“对成”。
若然,则这也可明白,每一事物只能有一事物为之对成(因为极端之外既无它极,而在同时间内也不能有更多的极端)
,而一般说来,如以差异论对成,则差异以及完全差异必须是两个事物之间的差异。
又,大家所承认的其它诸相对公式也必需是真实的。
(一)
所谓完全差异(因为我们不能在这差异范围以外为事物之“于属相异”或“于种相异”者另寻差异,这曾说明过①在科属之内任何事物不能与科属以外事物比论差异)
,(甲)不仅应是同品种事物之间的最大差异,也该(乙)以同科属内事物之具有最大差异者为相对(这里所谓完全差异是同科属事物间的最大差异)
;以及(二)容受材料相同亦即物质相同的事物间,其差异最大者为相对;与(三)归属于同一职能〈学术门类〉的事物,其差异最大者为相对(一门学术处理一级事物,这里所谓完全差异就是同职能事物间的最大差异)。
基本对成由“持有”
〈正〉与其“阙失”
〈负〉相配合——可是,阙失有数项不同命意,并非每—阙失均可与其正面状
①见于本页105a6。此支句辞意与1054b27—30,35各句有不符合处。其一辞意假定科属之上更有统辖各科属之总类,另一辞意则科属上更无统率。
…… 246
。
42。形而上学
态配为基本对成,只有完全阙失才可以。其它对成都得比照于这些基本对成,有些因获得这些,有些因产生或势必产生这些,另有些则因占有或失去这些基本对成或其它对成而成为对成。现在,对反式若以“相反”
〈矛盾〉、“阙失”
、“相对”与“相关”四类论列,其中以相反为第一,相反不容许任何间体,而相对则容有间体,相反与相对显然不同。阙失这种类近于相反;凡一般地,或在某些决定性方面遭受阙失的事物就不能保有某些秉赋,或是它在本性上所原应有的秉赋今已不能保持。这里我们又说到阙失之数种不同命意,这曾已在别处列举过了。
①所以阙失是一个具有决定性的或是与那容受材料相应的矛盾或无能。相反不承认有间体而阙失却有时容许间体;理由是这样:每一事物可以是“相等”或“不是相等”
,但每一事物并不必然是“等或不等”
,若然如此,那就只有在容受相等性的范围之内才可以这样说。于是,适在进行创变的物质若由诸相对开始,或由这形式的获得或由这形式的褫夺进行,一切对反显然必涵有阙失,而一切阙失并不必然为对反(因为遭受阙失,可有几种不同方式)
;如变化由那两极进行这才会发生诸对反。
这也可由归纳为之说明。每组对成包涵一个阙失为它两项之一项,但各例并不一律;不相等性为相等性之阙失,不相似性为相切似性之阙失,另一方面恶德是善德之阙失。阙失各例之如何相异曾已叙及;②阙失之一例就是说它遭受一
①见卷,章二十二。
Q②见105b4—6。
…… 247
形而上学。
542。
个褫夺,另一例则是说它在某时期,或某一部分(例如某年龄或某些主要部分)
,或全时期或全部分遭受褫夺。所以,在有些例中可出现一个折中现象(有些人既不算好人也不算坏人)
,在另一些例,却并无折中(一个数必须是奇或偶)。又,有些对成主题分明,有些则不分明。所以,这是明白了,“对成”的一端总是阙失;这至少在基本对成或科属对应,例如“一与多”
,是确乎如此的;其它对成可以简化为这些对成。
章 五一物既然只有一个相对,我们要问“一与多”如何能相对,“等”与“大和小”如何能相对。
“抑或”一字只能用在一个对论之中,如“此物是白抑或”黑或是“此物是白抑或不白”
(我们不会这样发问,“此物是人抑或是白”)
,至于因为先有所预拟而询问“来者确是克来翁抑或苏格拉底”——这两者就并不同属任何一级必须分离的事物;可是在这里也成为不可同时出现的对反;我们在这里假定了两者的不并存,于是才作出“来者是谁”的询问;照这假定,倘说两者都来到,问题就成为荒谬了;但两者若真的都来,这还是同样可以纳入“一或多”的讨论之中,问题改变为“他们两人都来抑或其中一人来”
:于是既说“抑或”
必须是有关对反的问题,而我们却问起了“这个是较大或较小抑或相等”
,“等”与其它两项所对反的是什么?
“相等”
与两者或两者之一都不相对;“等”有何理由说是该与“较大”相对或说是宁与“较小”相对?又,说是“等”与“不等”为对反。所以“等”与“较大”
、“较小”相对,这样一事物就不止与一事物相对了。如“不等”之意并指较大较小两者,那么“等”就该可以与两者
…… 248
。
642。形而上学
都成相对(这一疑难支持了以“不等”为“未定之两”的主张)
,①但这引向一物与两物相对的结论,那是不可能的。又,“等”明显地是在“大和小”的中间,可是并没有人看到过对反可以处于中间;在定义上,对反也不能处于中间;虽对成两项间常容有某些事物之间体,然对成各项若自己处在中间,它就不得成为完全的对项了。
②
余下的问题是“等”所以与上两者相反的是“否定”
,抑为“阙失”。这不能于大小两者仅否定或褫夺其一;为什么这可否定或褫夺“大”而不能否定或褫夺“小”呢?这必须两都予以褫夺性的否定。为此故,“抑或”就两涉而不能单引其中之一(例如,“这是较大抑或相等”或“这是相等抑或较小”)
;这里就得常用三个“或”。
但这又并不是一个必然阙失;因为这并非每一不较大不较小的事物就必然相等,只有具备着相当属性的某些事物才可引用三“或”来相较。
于是“等”
,既非大亦非小,却又自然地既可大亦可小;这作为一个褫夺性的否定,与两者俱为相反(所以这也就是间体)。至于既非善〈佳〉又非恶〈劣〉之两反于善恶者